Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Pediatr Radiol ; 50(5): 656-663, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32047987

RESUMO

BACKGROUND: The need for background error correction in phase-contrast flow analysis has historically posed a challenge in cardiac magnetic resonance (MR) imaging. While previous studies have shown that phantom correction improves flow measurements, it impedes scanner workflow. OBJECTIVE: To evaluate the efficacy of self-calibrated non-linear phase-contrast correction on flows in pediatric and congenital cardiac MR compared to phantom correction as the standard. MATERIALS AND METHODS: We retrospectively identified children who had great-vessel phase-contrast and static phantom sequences acquired between January 2015 and June 2015. We applied a novel correction method to each phase-contrast sequence post hoc. Uncorrected, non-linear, and phantom-corrected flows were compared using intraclass correlation. We used paired t-tests to compare how closely non-linear and uncorrected flows approximated phantom-corrected flows. In children without intra- or extracardiac shunts or significant semilunar valvular regurgitation, we used paired t-tests to compare how closely the uncorrected pulmonary-to-systemic flow ratio (Qp:Qs) and non-linear Qp:Qs approximated phantom-corrected Qp:Qs. RESULTS: We included 211 diagnostic-quality phase-contrast sequences (93 aorta, 74 main pulmonary artery [MPA], 21 left pulmonary artery [LPA], 23 right pulmonary artery [RPA]) from 108 children (median age 15 years, interquartile range 11-18 years). Intraclass correlation showed strong agreement between non-linear and phantom-corrected flow measurements but also between uncorrected and phantom-corrected flow measurements. Non-linear flow measurements did not more closely approximate phantom-corrected measurements than did uncorrected measurements for any vessel. In 39 children without significant shunting or regurgitation, mean non-linear Qp:Qs (1.07; 95% confidence interval [CI] = 1.01, 1.13) was no closer than mean uncorrected Qp:Qs (1.06; 95% CI = 1.00, 1.13) to mean phantom-corrected Qp:Qs (1.02; 95% CI = 0.98, 1.06). CONCLUSION: Despite strong agreement between self-calibrated non-linear and phantom correction, cardiac flows and shunt calculations with non-linear correction were no closer to phantom-corrected measurements than those without background correction. However, phantom-corrected flows also demonstrated minimal differences from uncorrected flows. These findings suggest that in the current era, more accurate phase-contrast flow measurements might limit the need for background correction. Further investigation of the clinical impact and optimal methods of background correction in the pediatric and congenital cardiac population is needed.


Assuntos
Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Adolescente , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos , Sensibilidade e Especificidade
2.
Neuroradiology ; 62(2): 205-209, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31696239

RESUMO

PURPOSE: To compare the effectiveness of silent susceptibility-weighted angiography (sSWAN), a new imaging technique with lower acoustic noise, with conventional susceptibility-weighted angiography (cSWAN) in the detection of intracranial hemorrhagic lesions. METHODS: We measured the acoustic and background noise during sSWAN and cSWAN imaging and calculated the contrast-to-noise ratio (CNR) of the phantom consisting of eight chambers with different concentrations of superparamagnetic iron oxide. In the clinical study, we calculated the CNRs of hemorrhagic lesions in 15 patients and evaluated the images for conspicuity and artifact on each sequence and scored them on a 4-point scale. We also evaluated whether hypointense areas observed on sSWAN or cSWAN increased in size from those on T2*-weighted imaging (T2*-WI). RESULTS: Acoustic noise for sSWAN (57.9 ± 0.32 dB [background noise 51.3 dB]) was significantly less than that for cSWAN (89.0 ± 0.22 dB [background noise 50.9 dB]). The CNRs of phantoms for sSWAN were slightly but not significantly lower than those for cSWAN (P = 0.18). The CNRs of hemorrhagic lesions did not show significant differences between sSWAN and cSWAN (P = 0.17). There were no significant differences between sSWAN and cSWAN with respect to the scores for conspicuity, artifact, and change in size of hypointense areas from T2*-WI. CONCLUSION: sSWAN is equivalent to cSWAN with respect to the image quality for the detection of hemorrhagic lesions but has lower acoustic noise.


Assuntos
Angiografia Cerebral/métodos , Hemorragias Intracranianas/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Adulto , Idoso , Meios de Contraste , Feminino , Compostos Férricos , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos
3.
Brain ; 142(9): 2873-2887, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31321407

RESUMO

Impaired processing of emotional signals is a core feature of frontotemporal dementia syndromes, but the underlying neural mechanisms have proved challenging to characterize and measure. Progress in this field may depend on detecting functional changes in the working brain, and disentangling components of emotion processing that include sensory decoding, emotion categorization and emotional contagion. We addressed this using functional MRI of naturalistic, dynamic facial emotion processing with concurrent indices of autonomic arousal, in a cohort of patients representing all major frontotemporal dementia syndromes relative to healthy age-matched individuals. Seventeen patients with behavioural variant frontotemporal dementia [four female; mean (standard deviation) age 64.8 (6.8) years], 12 with semantic variant primary progressive aphasia [four female; 66.9 (7.0) years], nine with non-fluent variant primary progressive aphasia [five female; 67.4 (8.1) years] and 22 healthy controls [12 female; 68.6 (6.8) years] passively viewed videos of universal facial expressions during functional MRI acquisition, with simultaneous heart rate and pupillometric recordings; emotion identification accuracy was assessed in a post-scan behavioural task. Relative to healthy controls, patient groups showed significant impairments (analysis of variance models, all P < 0.05) of facial emotion identification (all syndromes) and cardiac (all syndromes) and pupillary (non-fluent variant only) reactivity. Group-level functional neuroanatomical changes were assessed using statistical parametric mapping, thresholded at P < 0.05 after correction for multiple comparisons over the whole brain or within pre-specified regions of interest. In response to viewing facial expressions, all participant groups showed comparable activation of primary visual cortex while patient groups showed differential hypo-activation of fusiform and posterior temporo-occipital junctional cortices. Bi-hemispheric, syndrome-specific activations predicting facial emotion identification performance were identified (behavioural variant, anterior insula and caudate; semantic variant, anterior temporal cortex; non-fluent variant, frontal operculum). The semantic and non-fluent variant groups additionally showed complex profiles of central parasympathetic and sympathetic autonomic involvement that overlapped signatures of emotional visual and categorization processing and extended (in the non-fluent group) to brainstem effector pathways. These findings open a window on the functional cerebral mechanisms underpinning complex socio-emotional phenotypes of frontotemporal dementia, with implications for novel physiological biomarker development.


Assuntos
Sintomas Afetivos/patologia , Mapeamento Encefálico , Emoções/fisiologia , Demência Frontotemporal/psicologia , Imageamento por Ressonância Magnética , Rede Nervosa/patologia , Sintomas Afetivos/etiologia , Sintomas Afetivos/fisiopatologia , Idoso , Afasia Primária Progressiva/patologia , Afasia Primária Progressiva/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Expressão Facial , Feminino , Demência Frontotemporal/classificação , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Sistema Límbico/patologia , Sistema Límbico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Pupila/fisiologia
4.
J Med Chem ; 61(19): 8797-8810, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204441

RESUMO

While the treatment of gastrointestinal stromal tumors (GISTs) has been revolutionized by the application of targeted tyrosine kinase inhibitors capable of inhibiting KIT-driven proliferation, diverse mutations to this kinase drive resistance to established therapies. Here we describe the identification of potent pan-KIT mutant kinase inhibitors that can be dosed without being limited by the tolerability issues seen with multitargeted agents. This effort focused on identification and optimization of an existing kinase scaffold through the use of structure-based design. Starting from a series of previously reported phenoxyquinazoline and quinoline based inhibitors of the tyrosine kinase PDGFRα, potency against a diverse panel of mutant KIT driven Ba/F3 cell lines was optimized, with a particular focus on reducing activity against a KDR driven cell model in order to limit the potential for hypertension commonly seen in second and third line GIST therapies. AZD3229 demonstrates potent single digit nM growth inhibition across a broad cell panel, with good margin to KDR-driven effects. Selectivity over KDR can be rationalized predominantly by the interaction of water molecules with the protein and ligand in the active site, and its kinome selectivity is similar to the best of the approved GIST agents. This compound demonstrates excellent cross-species pharmacokinetics, shows strong pharmacodynamic inhibition of target, and is active in several in vivo models of GIST.


Assuntos
Descoberta de Drogas , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Proteínas Mutantes/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Quinazolinas/química , Quinazolinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Quinazolinas/farmacocinética , Distribuição Tecidual , Triazóis/farmacocinética , Células Tumorais Cultivadas
5.
Radiology ; 289(2): 366-373, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30040039

RESUMO

Purpose To develop a deep learning reconstruction approach to improve the reconstruction speed and quality of highly undersampled variable-density single-shot fast spin-echo imaging by using a variational network (VN), and to clinically evaluate the feasibility of this approach. Materials and Methods Imaging was performed with a 3.0-T imager with a coronal variable-density single-shot fast spin-echo sequence at 3.25 times acceleration in 157 patients referred for abdominal imaging (mean age, 11 years; range, 1-34 years; 72 males [mean age, 10 years; range, 1-26 years] and 85 females [mean age, 12 years; range, 1-34 years]) between March 2016 and April 2017. A VN was trained based on the parallel imaging and compressed sensing (PICS) reconstruction of 130 patients. The remaining 27 patients were used for evaluation. Image quality was evaluated in an independent blinded fashion by three radiologists in terms of overall image quality, perceived signal-to-noise ratio, image contrast, sharpness, and residual artifacts with scores ranging from 1 (nondiagnostic) to 5 (excellent). Wilcoxon tests were performed to test the hypothesis that there was no significant difference between VN and PICS. Results VN achieved improved perceived signal-to-noise ratio (P = .01) and improved sharpness (P < .001), with no difference in image contrast (P = .24) and residual artifacts (P = .07). In terms of overall image quality, VN performed better than did PICS (P = .02). Average reconstruction time ± standard deviation was 5.60 seconds ± 1.30 per section for PICS and 0.19 second ± 0.04 per section for VN. Conclusion Compared with the conventional parallel imaging and compressed sensing reconstruction (PICS), the variational network (VN) approach accelerates the reconstruction of variable-density single-shot fast spin-echo sequences and achieves improved overall image quality with higher perceived signal-to-noise ratio and sharpness. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Abdome/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Artefatos , Criança , Pré-Escolar , Aprendizado Profundo , Imagem Ecoplanar , Estudos de Viabilidade , Feminino , Humanos , Lactente , Masculino , Razão Sinal-Ruído , Adulto Jovem
6.
Ann Clin Transl Neurol ; 5(6): 687-696, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29928652

RESUMO

OBJECTIVE: To establish proof-of-principle for the use of heart rate responses as objective measures of degraded emotional reactivity across the frontotemporal dementia spectrum, and to demonstrate specific relationships between cardiac autonomic responses and anatomical patterns of neurodegeneration. METHODS: Thirty-two patients representing all major frontotemporal dementia syndromes and 19 healthy older controls performed an emotion recognition task, viewing dynamic, naturalistic videos of facial emotions while ECG was recorded. Cardiac reactivity was indexed as the increase in interbeat interval at the onset of facial emotions. Gray matter associations of emotional reactivity were assessed using voxel-based morphometry of patients' brain MR images. RESULTS: Relative to healthy controls, all patient groups had impaired emotion identification, whereas cardiac reactivity was attenuated in those groups with predominant fronto-insular atrophy (behavioral variant frontotemporal dementia and nonfluent primary progressive aphasia), but preserved in syndromes focused on the anterior temporal lobes (right temporal variant frontotemporal dementia and semantic variant primary progressive aphasia). Impaired cardiac reactivity correlated with gray matter atrophy in a fronto-cingulo-insular network that overlapped correlates of cognitive emotion processing. INTERPRETATION: Autonomic indices of emotional reactivity dissociate from emotion categorization ability, stratifying frontotemporal dementia syndromes and showing promise as novel biomarkers. Attenuated cardiac responses to the emotions of others suggest a core pathophysiological mechanism for emotional blunting and degraded interpersonal reactivity in these diseases.

7.
Magn Reson Med ; 80(5): 2232-2245, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29536587

RESUMO

PURPOSE: To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. METHODS: A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. RESULTS: In a comparison of anatomical imaging in 16 patients using T2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. CONCLUSIONS: The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Corporal Total/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Feminino , Humanos , Imageamento Tridimensional , Imãs , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído
8.
Magn Reson Med ; 79(6): 2902-2911, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28971512

RESUMO

PURPOSE: To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. METHODS: A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. RESULTS: Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). CONCLUSION: The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Acústica , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Ruído , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Temperatura , Adulto Jovem
9.
Neuropsychologia ; 104: 144-156, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28811257

RESUMO

Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes.


Assuntos
Percepção Auditiva/fisiologia , Conflito Psicológico , Emoções/fisiologia , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/psicologia , Semântica , Estimulação Acústica , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Demência Frontotemporal/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estatísticas não Paramétricas
10.
Magn Reson Med ; 78(6): 2428-2438, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28244188

RESUMO

PURPOSE: Diffusion MRI often suffers from low signal-to-noise ratio, especially for high b-values. This work proposes a model-based denoising technique to address this limitation. METHODS: A generalization of the multi-shell spherical deconvolution model using a Richardson-Lucy algorithm is applied to noisy data. The reconstructed coefficients are then used in the forward model to compute denoised diffusion-weighted images (DWIs). The proposed method operates in the diffusion space and thus is complementary to image-based denoising methods. RESULTS: We demonstrate improved image quality on the DWIs themselves, maps of neurite orientation dispersion and density imaging, and diffusional kurtosis imaging (DKI), as well as reduced spurious peaks in deterministic tractography. For DKI in particular, we observe up to 50% error reduction and demonstrate high image quality using just 30 DWIs. This corresponds to greater than fourfold reduction in scan time if compared to the widely used 140-DWI acquisitions. We also confirm consistent performance in pathological data sets, namely in white matter lesions of a multiple sclerosis patient. CONCLUSION: The proposed denoising technique termed generalized spherical deconvolution has the potential of significantly improving image quality in diffusion MRI. Magn Reson Med 78:2428-2438, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Esclerose Múltipla/diagnóstico por imagem , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Imagem de Tensor de Difusão , Humanos , Imageamento Tridimensional , Modelos Lineares , Distribuição Normal , Reprodutibilidade dos Testes , Razão Sinal-Ruído
12.
Neurocase ; 22(3): 312-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26963051

RESUMO

Accounts of altered eating behavior in semantic dementia generally emphasize gluttony and abnormal food preferences. Here we describe two female patients with no past history of eating disorders who developed early prominent aversion to food in the context of an otherwise typical semantic dementia syndrome. One patient (aged 57) presented features in line with anorexia nervosa while the second patient (aged 58) presented with a syndrome more suggestive of bulimia nervosa. These cases add to the growing spectrum of apparently dichotomous behavior patterns in the frontotemporal dementias and illustrate a potentially under-recognized cause of eating disorders presenting in later life.


Assuntos
Anorexia Nervosa/etiologia , Bulimia Nervosa/etiologia , Demência Frontotemporal/complicações , Feminino , Humanos , Pessoa de Meia-Idade
13.
Neuropsychologia ; 81: 245-254, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26748236

RESUMO

art may signal emotions independently of a biological or social carrier: it might therefore constitute a test case for defining brain mechanisms of generic emotion decoding and the impact of disease states on those mechanisms. This is potentially of particular relevance to diseases in the frontotemporal lobar degeneration (FTLD) spectrum. These diseases are often led by emotional impairment despite retained or enhanced artistic interest in at least some patients. However, the processing of emotion from art has not been studied systematically in FTLD. Here we addressed this issue using a novel emotional valence matching task on abstract paintings in patients representing major syndromes of FTLD (behavioural variant frontotemporal dementia, n=11; sematic variant primary progressive aphasia (svPPA), n=7; nonfluent variant primary progressive aphasia (nfvPPA), n=6) relative to healthy older individuals (n=39). Performance on art emotion valence matching was compared between groups taking account of perceptual matching performance and assessed in relation to facial emotion matching using customised control tasks. Neuroanatomical correlates of art emotion processing were assessed using voxel-based morphometry of patients' brain MR images. All patient groups had a deficit of art emotion processing relative to healthy controls; there were no significant interactions between syndromic group and emotion modality. Poorer art emotion valence matching performance was associated with reduced grey matter volume in right lateral occopitotemporal cortex in proximity to regions previously implicated in the processing of dynamic visual signals. Our findings suggest that abstract art may be a useful model system for investigating mechanisms of generic emotion decoding and aesthetic processing in neurodegenerative diseases.


Assuntos
Arte , Encéfalo/patologia , Formação de Conceito/fisiologia , Emoções/fisiologia , Degeneração Lobar Frontotemporal/fisiopatologia , Idoso , Afasia Primária Progressiva , Estudos de Coortes , Face , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Inquéritos e Questionários
14.
Magn Reson Med ; 76(6): 1684-1696, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26822349

RESUMO

PURPOSE: Diffusional kurtosis imaging (DKI) is an approach to characterizing the non-Gaussian fraction of water diffusion in biological tissue. However, DKI is highly susceptible to the low signal-to-noise ratio of diffusion-weighted images, causing low precision and a significant bias due to Rician noise distribution. Here, we evaluate precision and bias using weighted linear least squares fitting of different acquisition schemes including several multishell schemes, a diffusion spectrum imaging (DSI) scheme, as well as a compressed sensing reconstruction of undersampled DSI scheme. METHODS: Monte Carlo simulations were performed to study the three-dimensional distribution of the apparent kurtosis coefficient (AKC). Experimental data were acquired from one healthy volunteer with multiple repetitions, using the same acquisition schemes as for the simulations. RESULTS: The angular distribution of the bias and precision were very inhomogeneous. While axial kurtosis was significantly overestimated, radial kurtosis was underestimated. The precision of radial kurtosis was up to 10-fold lower than axial kurtosis. CONCLUSION: The noise bias behavior of DKI is highly complex and can cause overestimation as well as underestimation of the AKC even within one voxel. The acquisition scheme with three shells, suggested by Poot et al, provided overall the best performance. Magn Reson Med 76:1684-1696, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Química Encefálica , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Magn Reson Med ; 76(6): 1939-1950, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26628078

RESUMO

PURPOSE: To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. METHODS: Two prototypes of an asymmetric head-only gradient coil set with a 42-cm inner diameter were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. Tests were performed in 24 volunteers to measure PNS thresholds with the transverse (x = left-right; y = anterior-posterior [A/P]) gradient coils of both prototypes. Fourteen of these 24 volunteers were also tested for the z-gradient PNS in the second prototype and were scanned with high-slew-rate echo planar imaging (EPI) immediately after the PNS tests. RESULTS: For both prototypes, the y-gradient PNS threshold was markedly higher than the x-gradient threshold. The z-gradient threshold was intermediate between those for the x- and y-coils. Of the 24 volunteers, only two experienced y-gradient PNS at 80 mT/m and 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. CONCLUSION: Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared with conventional whole body gradient coils. Magn Reson Med 76:1939-1950, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/fisiologia , Terapia por Estimulação Elétrica/instrumentação , Neuroestimuladores Implantáveis , Imageamento por Ressonância Magnética/instrumentação , Nervos Periféricos/fisiologia , Encéfalo/anatomia & histologia , Terapia por Estimulação Elétrica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
J Magn Reson Imaging ; 41(3): 841-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24753055

RESUMO

PURPOSE: To evaluate a model-independent, multi-directional anisotropy (MDA) metric that is analytically and experimentally equivalent to fractional anisotropy (FA) in single-direction diffusivity, but potentially superior to FA in its sensitivity to the underlying anisotropy of multi-directional diffusivity. MATERIALS AND METHODS: An expression for MDA was defined from the orientation distribution function (ODF) and its analytical relation to FA was derived. Simulations of single and crossed double-fibers were performed using a compressed-sensing-accelerated diffusion-spectrum-imaging (CS-DSI) scheme. In vivo brain imaging using CS-DSI was performed on eight healthy subjects. MDA was compared with FA and with another ODF-based metric known as generalized FA (GFA). RESULTS: In simulated single-direction fibers, MDA was shown to be equivalent to FA (from FA = 0.2 to 0.8). In crossed fibers, MDA provided superior differentiation of the underlying anisotropy as compared to FA and GFA. In vivo analysis shows that the MDA was superior to both FA (P = 0.015) and GFA (P = 0.021) in terms of its relative accuracy in crossed fiber regions. CONCLUSION: MDA provides a potentially superior measure of fiber anisotropy relative to conventional FA or GFA, and may be used to improve the assessment of disease in regions with multi-directional brain fibers.


Assuntos
Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Idoso , Anisotropia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/fisiologia , Valores de Referência , Reprodutibilidade dos Testes
17.
J Magn Reson Imaging ; 39(1): 85-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24339366

RESUMO

PURPOSE: To use a simplified hemodynamic model and Fourier-encoded velocity data to measure pulse pressure (PP) in the descending aorta. MATERIALS AND METHODS: A one-dimensional, cylindrically localized pulse sequence with Fourier velocity encoding (FVE) was used to obtain time-dependent velocity distributions along the descending aorta. Numerical evaluation of a simplified hemodynamic model, based on a cross-sectionally averaged form of the mass conservation equation, allowed estimation of the average pressure waveform and PP along 6-cm-long segments located within the descending aorta. Magnetic resonance (MR)-derived pressures were compared against applanation tonometry (AT) performed in healthy subjects (n = 18) and intravascular pressure measurements (IVPM) obtained in patients (n = 4) undergoing diagnostic cardiac angiography and then found to be either normal or with clinically insignificant coronary artery disease. RESULTS: The root mean square (RMS) error between MR- and AP-derived pressure waveforms was 11.7 ± 5.8%. With respect to IVPM, the RMS error ranged from 4.2% to 14.7%. In terms of pulse pressures, there was good agreement with both AT (bias = 0.99 mmHg; 95% limits of agreement (LOA) = [-5.0 to 7.0 mmHg]; range = 12.0 mmHg) and IVPM (bias = -1.82 mmHg; 95% LOA = [-7.2 to 3.5 mmHg]; range = 10.7 mmHg). CONCLUSION: FVE M-mode and numerical evaluation of a simplified flow model can be used to estimate central pulse pressures noninvasively and accurately with respect to well-established gold standards.


Assuntos
Pressão Arterial , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Algoritmos , Cateterismo Cardíaco , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/patologia , Análise de Fourier , Voluntários Saudáveis , Hemodinâmica , Humanos , Processamento de Imagem Assistida por Computador , Manometria , Pessoa de Meia-Idade , Pressão
18.
J Magn Reson Imaging ; 37(1): 109-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22996390

RESUMO

PURPOSE: To optimize and validate a modified cine inversion recovery sequence (MCine-IR) for myocardial T1 quantification and gadolinium partition coefficient (λ(Gd)) estimation at 1.5 T. MATERIALS AND METHODS: The original version of the cine inversion recovery sequence was modified to allow fully transverse magnetization recovery between two successive inversion pulses. Sixty heart phases were acquired from a number of heart cycles determined on a patient heart rate basis. Phantom studies were carried out to find the optimal effective TR for myocardial and blood pool T1 quantifications in pre- and postcontrast studies. Four patients with myocardial infarct (MI) and 22 dilated cardiomyopathy (DCM) were investigated, as well as 11 healthy subjects used as controls. RESULTS: Effective TR was identified to be 5000 msec and 2000 msec, respectively, for pre- and postcontrast studies. A longer precontrast (948 ± 102 msec) and shorter postcontrast (348 ± 27 msec) T1 in ischemic patients relative to DCM (815 ± 98 msec, P = 0.03 and 409 ± 42 msec, P = 0.001) were noted in delayed enhancement (DE) areas. In MI patients λ(Gd) resulted higher than in DCM in DE areas (609 ± 167 vs. 422 ± 52, P = 0.01) but lower in segments not exhibiting DE (355 ± 100 vs. 398 ± 54, P = 0.02). CONCLUSION: It was feasible to measure T1 and λ(Gd) with MCine-IR and the results were in good agreement with the literature.


Assuntos
Gadolínio/farmacologia , Coração/fisiopatologia , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , Adulto , Idoso , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/patologia , Meios de Contraste/farmacologia , Diagnóstico por Imagem/métodos , Feminino , Frequência Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Imagens de Fantasmas
19.
J Magn Reson Imaging ; 38(2): 448-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23172675

RESUMO

PURPOSE: To provide an improved correction for gradient nonlinearity (GN) effects in diffusion-weighted imaging (DWI). These effects produce spatially varying apparent diffusion coefficient (ADC), a result that will be significant in large field-of-view imaging, and may be confounded by distortion and concomitant fields related to the DWI acquisition. MATERIALS AND METHODS: The effect of more accurate gradient field maps on GN correction (GNC) of ADC was evaluated. A simulation compared GN effects in commonly imaged anatomy. A temperature-controlled phantom was imaged at positions 0 cm and 11 cm from isocenter and in two whole-body MRI systems at 1.5T with different patient bore diameters (55 cm and 60 cm). Varying correction methods were applied to determine the errors from spatial variance and interscanner reproducibility. RESULTS: As compared to conventional fifth-order spherical harmonics, a seventh-order GNC improved ADC accuracy by 1%. The combination of GNC with a dual-spin-echo pulse sequence and a retrospective concomitant field correction reduced ADC error due to spatial variance from 9.5% to 1.8% (55 cm bore) and from 4.2% to 1.8% (60 cm bore). The error in ADC attributed to interscanner reproducibility was reduced from 5.8% to 0.15% (at isocenter) and from 10% to 0.63% (11 cm from isocenter). CONCLUSION: GNC in DWI improved spatial accuracy and interscanner reproducibility of ADC.


Assuntos
Algoritmos , Artefatos , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Corporal Total/métodos , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Magn Reson Med ; 68(5): 1450-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22266597

RESUMO

We describe and evaluate a robust method for compressive sensing MRI reconstruction using an iterative soft thresholding framework that is data-driven, so that no tuning of free parameters is required. The approach described here combines a Nesterov type optimal gradient scheme for iterative update along with standard wavelet-based adaptive denoising methods, resulting in a leaner implementation compared with the nonlinear conjugate gradient method. Tests with T2 weighted brain data and vascular 3D phase contrast data show that the image quality of reconstructions is comparable with those from an empirically tuned nonlinear conjugate gradient approach. Statistical analysis of image quality scores for multiple datasets indicates that the iterative soft thresholding approach as presented here may improve the robustness of the reconstruction and the image quality, when compared with nonlinear conjugate gradient that requires manual tuning for each dataset. A data-driven approach as illustrated in this article should improve future clinical applicability of compressive sensing image reconstruction.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Compressão de Dados/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...